LETTERS TO THE EDITOR

TRANSVERSE VIBRATIONS OF CIRCULAR, ANNULAR PLATES WITH SEVERAL COMBINATIONS OF BOUNDARY CONDITIONS

S. A. Vera, M. D. Sánchez, P. A. A. Laura and D. A. Vega
Departments of Physics and Engineering, Universidad Nacional del Sur and Institute of Applied Mechanics (CONICET), (8000) Bahía Blanca, Argentina

(Received 23 December 1997)

1. INTRODUCTION

A recent publication deals with the exact determination of lower natural frequency coefficients of circular, annular plates with a free inner boundary while the outer contour is either clamped or simply supported [1]. The study was motivated by design needs of transducer elements. It was pointed out by the authors in that study, that certain Rayleigh-Ritz type determinations provided numerical results which were in gross disagreement with eigenvalues previously available in the open literature and considered as "exact". It was concluded that the latter did not possess enough accuracy.

More recently the authors of reference [1] were confronted with the need of knowledge of the lower natural frequencies of natural, circular plates with the four combinations of boundary conditions, see Figure 1: clamped at both boundaries (Case I); clamped at $r=a$ and simply supported at $r=b$ (Case II); simply supported at $r=a$ and clamped at $r=b$ (Case III); simply supported at both edges (Case IV).

2. EXACT MATHEMATICAL SOLUTION OF VIBRATING THIN, CIRCULAR ANNULAR PLATES

The exact mathematical solution of the problem under study is well known (see, for instance, Leissa's classical treatise [2]). Normal modes of transversal vibration are described by the eigenfunction

$$
\begin{equation*}
W_{n}(r, \theta)=\left[A_{n} \mathbf{J}_{n}(k r)+B_{n} \mathrm{Y}_{n}(k r)+C_{n} \mathbf{I}_{n}(k r)+D_{n} \mathbf{K}_{n}(k r)\right] \mathrm{e}^{\mathrm{i} n \theta} \tag{1}
\end{equation*}
$$

where \mathbf{J}_{n} and Y_{n} are the Bessel functions of the first and second kind, respectively, and \mathbf{I}_{n} and K_{n} are modified Bessel functions of the first and second kind, respectively. The parameter k is given by

$$
\begin{equation*}
k^{4}=(\rho h / D) \omega^{2} \tag{2}
\end{equation*}
$$

where ρ is the density of the plate material, h is the plate thickness, D is the flexural rigidity and ω the circular natural frequency of the structural system.

Consider now the case where the edge $r=a$ is clamped. The governing boundary conditions are

$$
\begin{equation*}
W_{n}(a, \theta)=\left(\partial W_{n} / \partial r\right)(a, \theta)=0 \tag{3}
\end{equation*}
$$

Figure 1. Different mechanical configurations executing transverse vibrations considered in the present study: (a) Case I; (b) Case II; (c) Case III; (d) Case IV.

If the contour $r=a$ is simply supported one has

$$
\begin{equation*}
W_{n}(a, \theta)=0, \quad-\left.D\left[\frac{\partial^{2} W_{n}}{\partial r^{2}}+v\left(\frac{1}{r} \frac{\partial W_{n}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} W_{n}}{\partial \theta^{2}}\right)\right]\right|_{r=a}=0 \tag{4,5}
\end{equation*}
$$

In order to calculate derivatives of Bessel functions one makes use of well known recurrence relations [2]. In the case of $n=0$ (axisymmetric modes) they are quite simple

$$
\begin{gather*}
(\mathrm{d} / \mathrm{d} r) \mathrm{J}_{0}(k r)=-k J_{1}(k r), \quad(\mathrm{d} / \mathrm{d} r) \mathrm{Y}_{0}(k r)=-k Y_{1}(k r), \\
(\mathrm{d} / \mathrm{d} r) \mathrm{I}_{0}(k r)=k I_{1}(k r), \quad(\mathrm{d} / \mathrm{d} r) \mathrm{K}_{0}(k r)=-k K_{1}(k r) \tag{6}
\end{gather*}
$$

In order to satisfy the condition (5) for $n=0$ one proceeds in the following straightforward manner. The Bessel function J_{0} and Y_{0} satisfy the differential equation

$$
\begin{equation*}
\mathrm{d}^{2} W_{1} / \mathrm{d} r^{2}+(1 / r) \mathrm{d} W_{1} / \mathrm{d} r+k^{2} W_{1}=0 \tag{7}
\end{equation*}
$$

Accordingly,

$$
\begin{equation*}
\mathrm{d}^{2} W_{1} / \mathrm{d} r^{2}=-(1 / r) \mathrm{d} W_{1} / \mathrm{d} r-k^{2} W_{1} \tag{8}
\end{equation*}
$$

Adding the term $\left((v / r) \mathrm{d} W_{1} / \mathrm{d} r\right)$ to both sides one obtains

$$
\begin{equation*}
\mathrm{d}^{2} W_{1} / \mathrm{d} r^{2}+(v / r) \mathrm{d} W_{1} / \mathrm{d} r=-k^{2} W_{1}+(1 / r) \mathrm{d} W_{1} / \mathrm{d} r(v-1) \tag{9}
\end{equation*}
$$

which expresses the corresponding component of the boundary condition at $r=a$ in terms of the original Bessel functions \mathbf{J}_{0} and Y_{0}, and their first order derivatives.

On the other hand, the modified Bessel functions satisfy

$$
\begin{equation*}
\mathrm{d}^{2} W_{2} / \mathrm{d} r^{2}+(1 / r) \mathrm{d} W_{2} / \mathrm{d} r-k^{2} W_{2}=0 \tag{10}
\end{equation*}
$$

Following a similar procedure to the one previously explained one obtains

$$
\begin{equation*}
\mathrm{d}^{2} W_{2} / \mathrm{d} r^{2}+(v / r) \mathrm{d} W_{2} / \mathrm{d} r=k^{2} W_{2}+(1 / r) \mathrm{d} W_{2} / \mathrm{d} r(v-1) \tag{11}
\end{equation*}
$$

Table 1
Frequency coefficients $\Omega_{0 n}=\sqrt{\rho h / D} \omega_{0 n} a^{2}$ for circular annular plates clamped at both boundaries (Case I)

b / a	n		
	0	1	2
$0 \cdot 1$	$27 \cdot 2805$	28.9157	36.6172
$0 \cdot 2$	$34 \cdot 6092$	$36 \cdot 1032$	41.8196
$0 \cdot 3$	$45 \cdot 3462$	$46 \cdot 6435$	$51 \cdot 1388$
$0 \cdot 4$	$61 \cdot 8722$	$62 \cdot 9959$	66.6716
0.5	89.2500	$90 \cdot 2302$	$93 \cdot 3212$
$0 \cdot 6$	$139 \cdot 6190$	140.4795	$143 \cdot 1338$
0.7	248.4021	$249 \cdot 1638$	251.4805
$0 \cdot 8$	559.1625	$559 \cdot 8416$	$561 \cdot 8899$
0.9	2237-1762	$2237 \cdot 7855$	$2239 \cdot 6157$

Note: the results are independent of v

The null displacement conditions at each boundary and relations (6) have been used for the case of a clamped edge. When the boundary is simply supported one makes use of the zero displacement condition and implements relations (10) and (11). The resulting frequency determinants for the four cases depicted in Figure 1 are shown in the Appendix A (equations (A1)-(A4)).

3. NUMERICAL RESULTS

The eigenvalues have been computed for $v=0 \cdot 3$ and $1 / 3$ (obviously in the case where both boundaries are clamped, the eigenvalues are independent of Poisson's ratio, see equation (A-1)). Use has been made of Maple V [3]. Tables 1-4 depict values of $\Omega_{0 n}=\sqrt{\rho h / D} \omega_{0 n} a^{2}$ for $b / a=0 \cdot 1,0 \cdot 2, \ldots, 0 \cdot 9$ for the four structural configurations shown in Figure 1. The subscript " 0 " denotes the fact that only the first eigenvalue corresponding to each value of n has been calculated. Clearly, Ω_{00} is the fundamental frequency coefficient for each situation. Comparing the results of Table 1 with those contained in table 2.17

Table 2
Frequency coefficients $\Omega_{0 n}=\sqrt{\rho h / D} \omega_{0 n} a^{2}$ for circular, annular plates clamped at $r=a$ and simply supported at $r=b$ (Case II)

	$\begin{gathered} v=0 \cdot 3 \\ n \end{gathered}$			$\begin{gathered} v=1 / 3 \\ n \end{gathered}$		
b / a	0	1	2	0	1	2
$0 \cdot 1$	22.7014	25.2826	35.4062	22.5846	25.2090	35.3919
$0 \cdot 2$	26.7371	$29 \cdot 2487$	37.6201	$26 \cdot 6196$	$29 \cdot 1576$	37.5785
$0 \cdot 3$	33.7654	35.9055	42.7314	$33 \cdot 6526$	$35 \cdot 8072$	42.6661
$0 \cdot 4$	45.0444	$46 \cdot 8386$	$52 \cdot 4360$	44.9323	$46 \cdot 7345$	52.3526
0.5	63.9732	$65 \cdot 4855$	$70 \cdot 1359$	$63 \cdot 8562$	65.3731	$70 \cdot 0360$
$0 \cdot 6$	98.9228	$100 \cdot 2105$	104•1305	98.6937	$100 \cdot 0839$	$104 \cdot 0112$
0.7	174.4077	175.5159	$178 \cdot 8659$	$174 \cdot 2535$	175.3631	178.7172
0.8	389.7206	390.6838	$393 \cdot 5825$	389.5112	$390 \cdot 4750$	393.3758
$0 \cdot 9$	1549.7372	$1550 \cdot 5819$	1553.1177	$1549 \cdot 3544$	1550.1993	1552.7360

Table 3
Frequency coefficients $\Omega_{0 n}=\sqrt{\rho h / D} \omega_{0 n} a^{2}$ for circular, annular plates simply supported at $r=a$ and clamped at $r=b$ (Case III)

b / a	$\begin{gathered} v=0 \cdot 3 \\ n \end{gathered}$			$\begin{gathered} v=1 / 3 \\ n \end{gathered}$		
	0	1	2	0	1	2
$0 \cdot 1$	17.7893	19.3941	26.7169	17.8376	$19 \cdot 4401$	26.7578
$0 \cdot 2$	22.7144	$24 \cdot 2722$	30.0880	22.7674	24.3229	30.1332
$0 \cdot 3$	29.9777	31.4025	$36 \cdot 2434$	30.0367	$31 \cdot 4595$	$36 \cdot 2952$
$0 \cdot 4$	41-1932	$42 \cdot 4827$	$46 \cdot 6382$	41.2605	42.5483	$46 \cdot 6990$
$0 \cdot 5$	$59 \cdot 8199$	$60 \cdot 9870$	$64 \cdot 6313$	59.8987	61.0644	$64 \cdot 7048$
$0 \cdot 6$	$94 \cdot 1674$	95.2267	98.4727	94.2636	$95 \cdot 3219$	98.5648
$0 \cdot 7$	168.5240	169.4892	172.4139	168.6494	169.6139	172.5363
$0 \cdot 8$	381-4534	382.3362	384.9948	381.6373	$382 \cdot 5197$	385•1768
0.9	1534.1369	$1534 \cdot 9475$	1537.3810	$1534 \cdot 4969$	1535-3072	1537.7400

of reference [2] \dagger one notices a reasonably good agreement for values of $b / a \leqslant 0 \cdot 5$. The agreement is considerably better when comparing with the results contained in Table 2.18 of reference $[2] . \dagger$

The agreement is, again, quite reasonable between the frequency coefficients contained in Table 2 and those presented in Table 2.20 of reference [2] which were determined by Vogel and Skinner [5] for $v=0 \cdot 3$. As shown in Table 2 the values of $\Omega_{0 n}$ decrease slightly as v increases from $0 \cdot 3$ to $1 / 3$.

For the configuration defined as (III) in Figure 1 there is good agreement between the results shown in Table 3 and those contained in Table 2.24 of references [2, 5] for $v=0 \cdot 3$. From the analysis of Table 3 one concludes that the eigenvalues increase as v varies from $0 \cdot 3$ to $1 / 3$. There is also good coincidence with the results depicted in Table 2.23 of references [2, 6].

In the case where both boundaries are simply supported the largest discrepancy with the eigenvalue Ω_{00} obtained by Raju (Table 2.25 of references [2, 6]) is for $b / a=0.2$ and $v=1 / 3$; see Table 4. It is observed that $\Omega_{0 n}$ decreases as v increases from 0.3 to $1 / 3$.
\dagger Obtained from reference [4]; \ddagger Obtained from reference [5].

Table 4

Frequency coefficients $\Omega_{0 n}=\sqrt{\rho h / D} \omega_{0 n} a^{2}$ for circular, annular plates simply supported at both boundaries (Case IV)

b / a	$\begin{gathered} v=0 \cdot 3 \\ n \end{gathered}$			$\begin{gathered} v=1 / 3 \\ n \end{gathered}$		
	0	1	2	0	1	2
0.1	14.4847	16.7759	25.9357	14.4386	17.7635	25.9662
0.2	16.7796	19.2222	27.2404	16.7298	19.1960	27.2530
0.3	21.0791	23.3171	30.2734	21.0357	23.2871	30.2705
0.4	28.1225	30.1092	36.1560	28.0853	30.0794	36.1431
0.5	40.0431	41.7973	47.0887	40.0111	41.7691	47.0702
0.6	62.1542	63.7065	68.3717	62.1264	63.6805	68.3508
0.7	110.0634	111.4433	115.5851	110.0389	111.4197	115.5638
0.8	247.0904	248.3236	252.0234	247.0687	248.3022	252.0029
0.9	987.2715	988.3793	991.7026	982.2521	988.3599	991.6834

4. CONCLUSIONS

It is hoped that the eigenvalues presented in this paper will be useful to acousticians and mechanical designers since considerable effort has been placed in providing very good accuracy. On the other hand considerable credit must be given to previous researchers who, with very modest computational tools, provided extremely useful numerical results.

ACKNOWLEDGMENTS

The present study has been sponsored by Secretaría General de Ciencia y Tecnología of Universidad Nacional del Sur (Grant: Physics Department), Comisión de Investigaciones Científicas, Buenos Aires Province (Project Director: Professor R. E. Rossi). D. A. Vega, S. A. Vera and M. D. Sánchez have been supported by CONICET fellowships.

REFERENCES

1. D. A. Vega, S. A. Vera, M. D. Sánchez and P. A. A. Laura 1998 Journal of the Acoustical Society of America (accepted for publication). Transverse vibration of circular, annular plates with a free inner boundary.
2. A. W. Leissa 1969. NASA SP 160. Vibration of Plates.
3. B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt 1991 MAPLE V.5, Library Reference Manual.
4. V. S. Gontkevich 1964 Natural Vibrations of Plates and Shells (A. P. Filippov, editor). Kiev: Nauk. Dumka. (Translated by Lockheed Missiles and Space Co., Sunnyvale, California).
5. S. M. Vogel and D. W. Skinner 1965 Journal of Applied Mechanics 32, 926-931. Natural frequencies of transversely vibrating uniform annular plates.
6. P. N. Raju 1962 Journal of the Aeronautical Society of India 14, 37-52. Vibrations of annular plates.

APPENDIX A:

(see equations A1-A4 overpage)
APPENDIX A: FREQUENCY EQUATIONS FOR CASES I TO IV

