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S. A. V, M. D. Ś, P. A. A. L and D. A. V

Departments of Physics and Engineering, Universidad Nacional del Sur and
Institute of Applied Mechanics (CONICET), (8000) Bahı́a Blanca, Argentina

(Received 23 December 1997)

1. 

A recent publication deals with the exact determination of lower natural frequency
coefficients of circular, annular plates with a free inner boundary while the outer
contour is either clamped or simply supported [1]. The study was motivated by
design needs of transducer elements. It was pointed out by the authors in that study, that
certain Rayleigh–Ritz type determinations provided numerical results which were in
gross disagreement with eigenvalues previously available in the open literature
and considered as ‘‘exact’’. It was concluded that the latter did not possess enough
accuracy.

More recently the authors of reference [1] were confronted with the need of knowledge
of the lower natural frequencies of natural, circular plates with the four combinations of
boundary conditions, see Figure 1: clamped at both boundaries (Case I); clamped at r= a
and simply supported at r= b (Case II); simply supported at r= a and clamped at r= b
(Case III); simply supported at both edges (Case IV).

2.      ,   

The exact mathematical solution of the problem under study is well known (see, for
instance, Leissa’s classical treatise [2]). Normal modes of transversal vibration are
described by the eigenfunction

Wn (r, u)= [AnJn (kr)+BnYn (kr)+Cn In (kr)+DnKn (kr)] einu, (1)

where Jn and Yn are the Bessel functions of the first and second kind, respectively, and In

and Kn are modified Bessel functions of the first and second kind, respectively. The
parameter k is given by

k4 = (rh/D)v2 (2)

where r is the density of the plate material, h is the plate thickness, D is the flexural rigidity
and v the circular natural frequency of the structural system.

Consider now the case where the edge r= a is clamped. The governing boundary
conditions are

Wn (a, u)= (1Wn /1r)(a, u)=0. (3)
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Figure 1. Different mechanical configurations executing transverse vibrations considered in the present study:
(a) Case I; (b) Case II; (c) Case III; (d) Case IV.

If the contour r= a is simply supported one has

Wn (a, u)=0, −D$12Wn

1r2 + n01r 1Wn

1r
+

1
r2

12Wn

1u2 1%br= a

=0 (4, 5)

In order to calculate derivatives of Bessel functions one makes use of well known
recurrence relations [2]. In the case of n=0 (axisymmetric modes) they are quite simple

(d/dr)J0(kr)=−kJ1(kr), (d/dr)Y0(kr)=−kY1(kr),

(d/dr)I0(kr)= kI1(kr), (d/dr)K0(kr)=−kK1(kr). (6)

In order to satisfy the condition (5) for n=0 one proceeds in the following
straightforward manner. The Bessel function J0 and Y0 satisfy the differential equation

d2W1/dr2 + (1/r) dW1/dr+ k2W1 =0. (7)

Accordingly,

d2W1/dr2 =−(1/r) dW1/dr− k2W1. (8)

Adding the term ((n/r) dW1/dr) to both sides one obtains

d2W1/dr2 + (n/r) dW1/dr=−k2W1 + (1/r) dW1/dr(n−1). (9)

which expresses the corresponding component of the boundary condition at r= a in terms
of the original Bessel functions J0 and Y0, and their first order derivatives.

On the other hand, the modified Bessel functions satisfy

d2W2/dr2 + (1/r) dW2/dr− k2W2 =0. (10)

Following a similar procedure to the one previously explained one obtains

d2W2/dr2 + (n/r) dW2/dr= k2W2 + (1/r) dW2/dr(n−1). (11)
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T 1

Frequency coefficients V0n =zrh/Dv0na2 for circular annular plates
clamped at both boundaries (Case I)

n
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

b/a 0 1 2

0·1 27·2805 28·9157 36·6172
0·2 34·6092 36·1032 41·8196
0·3 45·3462 46·6435 51·1388
0·4 61·8722 62·9959 66·6716
0·5 89·2500 90·2302 93·3212
0·6 139·6190 140·4795 143·1338
0·7 248·4021 249·1638 251·4805
0·8 559·1625 559·8416 561·8899
0·9 2237·1762 2237·7855 2239·6157

Note: the results are independent of n

The null displacement conditions at each boundary and relations (6) have been used for
the case of a clamped edge. When the boundary is simply supported one makes use of the
zero displacement condition and implements relations (10) and (11). The resulting
frequency determinants for the four cases depicted in Figure 1 are shown in the Appendix
A (equations (A1)–(A4)).

3.  

The eigenvalues have been computed for n=0·3 and 1/3 (obviously in the case where
both boundaries are clamped, the eigenvalues are independent of Poisson’s ratio, see
equation (A-1)). Use has been made of Maple V [3]. Tables 1–4 depict values of
V0n =zrh/Dv0na2 for b/a=0·1, 0·2, . . . , 0·9 for the four structural configurations shown
in Figure 1. The subscript ‘‘0’’ denotes the fact that only the first eigenvalue corresponding
to each value of n has been calculated. Clearly, V00 is the fundamental frequency coefficient
for each situation. Comparing the results of Table 1 with those contained in table 2.17

T 2

Frequency coefficients V0n =zrh/Dv0na2 for circular, annular plates clamped at r= a and
simply supported at r= b (Case II)

n=0·3 n=1/3
n n

ZXXXXXXXXCXXXXXXXXV ZXXXXXXXXCXXXXXXXXV
b/a 0 1 2 0 1 2

0·1 22·7014 25·2826 35·4062 22·5846 25·2090 35·3919
0·2 26·7371 29·2487 37·6201 26·6196 29·1576 37·5785
0·3 33·7654 35·9055 42·7314 33·6526 35·8072 42·6661
0·4 45·0444 46·8386 52·4360 44·9323 46·7345 52·3526
0·5 63·9732 65·4855 70·1359 63·8562 65·3731 70·0360
0·6 98·9228 100·2105 104·1305 98·6937 100·0839 104·0112
0·7 174·4077 175·5159 178·8659 174·2535 175·3631 178·7172
0·8 389·7206 390·6838 393·5825 389·5112 390·4750 393·3758
0·9 1549·7372 1550·5819 1553·1177 1549·3544 1550·1993 1552·7360
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T 3

Frequency coefficients V0n =zrh/Dv0na2 for circular, annular plates simply supported at
r= a and clamped at r= b (Case III)

n=0·3 n=1/3
n n

ZXXXXXXXXCXXXXXXXXV ZXXXXXXXXCXXXXXXXXV
b/a 0 1 2 0 1 2

0·1 17·7893 19·3941 26·7169 17·8376 19·4401 26·7578
0·2 22·7144 24·2722 30·0880 22·7674 24·3229 30·1332
0·3 29·9777 31·4025 36·2434 30·0367 31·4595 36·2952
0·4 41·1932 42·4827 46·6382 41·2605 42·5483 46·6990
0·5 59·8199 60·9870 64·6313 59·8987 61·0644 64·7048
0·6 94·1674 95·2267 98·4727 94·2636 95·3219 98·5648
0·7 168·5240 169·4892 172·4139 168·6494 169·6139 172·5363
0·8 381·4534 382·3362 384·9948 381·6373 382·5197 385·1768
0·9 1534·1369 1534·9475 1537·3810 1534·4969 1535·3072 1537·7400

of reference [2]† one notices a reasonably good agreement for values of b/aE 0·5. The
agreement is considerably better when comparing with the results contained in Table 2.18
of reference [2].‡

The agreement is, again, quite reasonable between the frequency coefficients contained
in Table 2 and those presented in Table 2.20 of reference [2] which were determined by
Vogel and Skinner [5] for n=0·3. As shown in Table 2 the values of V0n decrease slightly
as n increases from 0·3 to 1/3.

For the configuration defined as (III) in Figure 1 there is good agreement between the
results shown in Table 3 and those contained in Table 2.24 of references [2, 5] for n=0·3.
From the analysis of Table 3 one concludes that the eigenvalues increase as n varies from
0·3 to 1/3. There is also good coincidence with the results depicted in Table 2.23 of
references [2, 6].

In the case where both boundaries are simply supported the largest discrepancy with
the eigenvalue V00 obtained by Raju (Table 2.25 of references [2, 6]) is for b/a=0·2 and
n=1/3; see Table 4. It is observed that V0n decreases as n increases from 0·3 to 1/3.

† Obtained from reference [4]; ‡ Obtained from reference [5].

T 4

Frequency coefficients V0n =zrh/Dv0na2 for circular, annular plates simply supported at
both boundaries (Case IV)

n=0·3 n=1/3
n n

ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV
b/a 0 1 2 0 1 2

0.1 14.4847 16.7759 25.9357 14.4386 17.7635 25.9662
0.2 16.7796 19.2222 27.2404 16.7298 19.1960 27.2530
0.3 21.0791 23.3171 30.2734 21.0357 23.2871 30.2705
0.4 28.1225 30.1092 36.1560 28.0853 30.0794 36.1431
0.5 40.0431 41.7973 47.0887 40.0111 41.7691 47.0702
0.6 62.1542 63.7065 68.3717 62.1264 63.6805 68.3508
0.7 110.0634 111.4433 115.5851 110.0389 111.4197 115.5638
0.8 247.0904 248.3236 252.0234 247.0687 248.3022 252.0029
0.9 987.2715 988.3793 991.7026 982.2521 988.3599 991.6834
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4. 

It is hoped that the eigenvalues presented in this paper will be useful to acousticians and
mechanical designers since considerable effort has been placed in providing very good
accuracy. On the other hand considerable credit must be given to previous researchers who,
with very modest computational tools, provided extremely useful numerical results.
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